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Abstract. The polynomial chaos expansion (PCE) is an efficient numerical method for
performing a reliability analysis. It relates the output of a nonlinear system with the
uncertainty in its input parameters using a multidimensional polynomial approxima-
tion (the so-called PCE). Numerically, such an approximation can be obtained by using
a regression method with a suitable design of experiments. The cost of this approxi-
mation depends on the size of the design of experiments. If the design of experiments
is large and the system is modeled with a computationally expensive FEA (Finite El-
ement Analysis) model, the PCE approximation becomes unfeasible. The aim of this
work is to propose an algorithm that generates efficiently a design of experiments of a
size defined by the user, in order to make the PCE approximation computationally fea-
sible. It is an optimization algorithm that seeks to find the best design of experiments
in the D-optimal sense for the PCE. This algorithm is a coupling between genetic algo-
rithms and the Fedorov exchange algorithm. The efficiency of our approach in terms of
accuracy and computational time reduction is compared with other existing methods
in the case of analytical functions and finite element based functions.

AMS subject classifications: 60H15, 62K20, 62K05
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1 Introduction

In the recent years, there has been an increasing interest in the simulation of systems with
uncertainties. Due to the uncertainties in the input parameters, the response of the me-
chanical system has a deterministic component and a random component; this random
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component is often ignored in traditional engineering practice. The reliability analysis
consists in defining the probability density functions (pdf) of the uncertain input pa-
rameters and then propagating them through the mathematical model of the mechanical
system in order to characterize the random component of the output.

The polynomial chaos expansion (PCE) method builds a multidimensional polyno-
mial function that approximates the output of the system around its nominal value with
respect to the uncertainty of the input parameters. There are two non-intrusive methods
to construct the PCE approximation: the projection method and the regression method
(see [22] and [23]). Both of them are black box methods that require a set of independent
simulations for different values of the input parameters.

The total computational time depends on three factors: the computer resources, the
computational time of one finite element analysis (FEA) and the number of simulations
needed to build PCE approximation. Usually, the industrial applications require expen-
sive finite element analysis. Hence, if the number of analyses for building the PCE is
large, the total computational time becomes unfeasible. Reducing the total computa-
tional time by tuning the first two factors is not an easy task. The computer resources
are usually limited and reducing the computational time of one FEA means reducing its
accuracy. Therefore, one has to reduce the third factor, the number of analyses for the
PCE, in order to be able to carry out a reliability analysis of an expensive FEA-based
application.

Recently, some new methods have been introduced to reduce the number of indepen-
dent simulations. The projection method requires running a set of simulations defined
over a sparse grid of nodes following some quadrature rules. In [16–19], the reduction of
the size of sparse grid is based on the anisotropy of the problem and the contribution of
each node of the sparse grid in the overall accuracy of the numerical evaluation.

The regression method requires the definition of a design of experiments depending
on the PCE polynomial function. In [1, 20, 21], a model reduction approach is considered
where some terms of the PCE approximation are discarded according to their pertinence
in the model. This leads to a reduction of the size of the design of experiments.

The preceding methods prescribe their number simulations without providing to the
user a direct control over the total number of simulations to perform the PCE approxima-
tion. The contribution of this paper is to propose a sampling algorithm for the regression
method where the user can choose the number simulations depending on the available
computer resources, the computational time of one FEA and the desired total computa-
tional time. The proposed algorithm gives the possibility to carry out a PCE approxima-
tion with the fewest number of simulations which is equal to the number of terms in the
PCE. Therefore, with this approach it is always possible to carry out a reliability analysis
based on an expensive FEA model and a large number of uncertain parameters.

The accuracy of the PCE approximation given by the regression method is propor-
tional to the determinant of the regression matrix. The approach proposed in this paper
consists in maximizing this determinant for a given number of samples. This leads to a
small sized design of experiments that covers efficiently all the space of the uncertain-
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ties. The proposed algorithm for maximizing the determinant of the regression matrix is
a coupling between genetic algorithms and the Fedorov exchange algorithm. The moti-
vation for this choice is discussed in Section 4. The efficiency of our approach in terms
of accuracy and computational time reduction is compared with other existing methods
(the projection method) for analytical and industrial cases.

2 Probability space and random variables

Computing the output of a mechanical system with uncertain parameters is considered as
a random experiment and can be studied using the PCE. In order to give a mathematical
framework of the PCE, a brief review of some definitions regarding probability space and
random variables is introduced in the sequel.

A probability space is a mathematical entity which models the uncertainty in the in-
put and the output of the mechanical system. Three ingredients (Ω,F ,P) are necessary
to define a probability space, where Ω is the set of all possible outcomes, F is a σ-algebra
over Ω, containing all possible events and P is a function F→R which gives a probability
measure for each random event. A random variable X is a function X : (Ω,F ,P)→R.

Using the preceding definitions, one can also define the expectation and the variance
of a random variable:

X̄=E[X]=
∫

XdP, (2.1)

var(X)=E[(X−X̄)2]=
∫

(X−X̄)2dP. (2.2)

We call <X,Y>=
∫

XYdP the inner product of two random variables on the probability
space and L2(Ω,F ,P) the set of random variables having a finite variance.

Before introducing the PCE, one must also have a look at the Hermite polynomials.
These polynomials are defined in a recursive way as follows:

H0=1, (2.3)

Hn+1(x)= xHn(x)−(n)Hn−1(x), (2.4)

and they have the property of being orthogonal with respect to the Gaussian measure. If
Hi and Hj are two Hermite polynomials of degrees i and j respectively, we have:

∫

Hi(x)Hj(x)e−x2/2dx= i!δij . (2.5)

Thus, if ξ is a Gaussian random variable, the two random variables Hi(ξ) and Hj(ξ)
are orthogonal with respect to the above inner product and the Gaussian measure. This
orthogonality property constitutes the basis of the PCE.

Note that, if ξ is a uniform random variable, the Hermite polynomials must be re-

placed by the Legendre polynomials and the density function e−x2/2 by 1.
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3 The polynomial chaos expansion (PCE)

In the following, the basis of the regression method and the D-optimal criterion are given.
More details can be found in [7].

The PCE method consists in considering a set of orthogonal multivariate polynomials
with respect to some inner product. Let M be the number of uncertain parameters in
the mechanical system and {ξi(ω)}M

i=1 be a set of M independent Gaussian random vari-
ables. Each random variable is associated to an uncertain parameter and represents its
perturbation. Consider Γp the space of multivariate polynomials of degree less or equal
to p and Γ̃p the space of polynomials of degree equal to p and orthogonal to Γp−1. We

have Γp =⊕
p
i=1Γ̃i. If the inner product is considered with the Gaussian measure, Γ̃p is

spanned with the multivariate Hermite polynomials {ψα(ξ)} of degree p, where α∈N
M

and |α|=∑
M
i=1αi= p. These multivariate Hermite polynomials {ψα(ξ)} are defined as the

product of M univariate Hermite polynomials of degree αi:

ψα(ξ)=
M

∏
i=1

Hαi
(ξi). (3.1)

If S denotes the random output of the mechanical system and has a finite variance, it can
be expressed as an infinite series of multivariate Hermite polynomials (see [14]):

S=
|α|=∞

∑
|α|=0

S
pce
α ψα(ξ)=

∞

∑
i=0

S
pce
i ψi(ξ). (3.2)

Here, the multi-index α of ψ is replaced by an index i given the univocal relationship
between these two notations. S

pce
i are the deterministic coefficients of the PCE.

One of the advantages of such a representation of the random output S is that comput-
ing the expectation and variance of S is straightforward. From the orthogonality property
of ψi, one can deduce that:

S̄=S
pce
0 , (3.3)

var(S)=
∞

∑
i=1

(S
pce
i )2. (3.4)

For computational reasons, this infinite series must be truncated to degree p and S is
replaced by S̃ with:

S̃=
N

∑
i=0

S
pce
i ψi(ξ), (3.5)

where N= (M+p)!
M!p! −1 is the number of terms involved in S̃.

In this paper, we consider the regression method to compute the coefficients S
pce
i of

the PCE. This method consists in defining a design of experiments, Ξ={ξ
j
i}

j=1,···,Q, which
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is a set of Q different perturbations of the input parameters and then computing (by
simulation) the output of S for each value ξ j of the design of experiment. These output
values are gathered in a vector Ssim ∈ R

Q. The coefficients S
pce
i are then computed by

solving the following linear least squares problem:

min
Spce

R=
1

2

Q

∑
j=1

(

Ssim
j −

N

∑
i=0

S
pce
i ψi(ξ

j)
)2

, (3.6)

where R is the squared residual between the simulated and the approximated output
values.

The solution of this optimization problem is derived in the following. Writing the
derivative of R with respect to S

pce
k equal to zero leads to:

Q

∑
j=1

ψk(ξ
j)
(

Ssim
j −

N

∑
i=0

S
pce
i ψi(ξ

j)
)

=0 ∀k=1,··· ,N. (3.7)

The above equation can be rearranged in the following form (called the normal equa-
tions):

Q

∑
j=1

N

∑
i=0

ψk(ξ
j)ψi(ξ

j)S
pce
i =

Q

∑
j=1

ψk(ξ
j)Ssim

j ∀k=1,··· ,N. (3.8)

Let Ψji =ψi(ξ
j) be a rectangular matrix in R

Q,N. Each row j of this matrix is the set of all

ψi’s computed for the experiment ξ j. Hence, the matrix representation is deduced from
the above equations:

Spce=(ΨtΨ)−1ΨtSsim. (3.9)

ΨtΨ is called the information matrix [7].

3.1 D-optimal design

In this section, it is shown how the choice of the DOE Ξ={ξ j}j=1,···,Q affects the accuracy
of the estimation of Spce. We recall that the output of the mechanical system is expressed
as a series of multivariate Hermite polynomial truncated at degree p (Eq. 3.5):

Ssim=
N

∑
i=0

S
pce
i ψi(ξ)+ε, (3.10)

where ε is the truncation error between the PCE and Ssim and is a random variable. The
presence of this random truncation error induces a random error in the estimation of Spce.
The variance of Spce is derived as follows:

var(Spce)=var((ΨtΨ)−1ΨtSsim)

=(ΨtΨ)−1Ψtvar(Ssim)((ΨtΨ)−1Ψt)t. (3.11)
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Assuming that var(Ssim)= Iσ2 meaning that the truncation errors in each simulation are
independent and have a constant variance equal to σ, we obtain:

var(Spce)=(ΨtΨ)−1σ. (3.12)

From Eqs. (3.9) and (3.12), one can deduce the relationship between Ξ and var(Spce). Each
S

pce
i is a linear combination of the terms of Ssim. Using the central limit theorem, Spce is a

vector of Gaussian variables of variance (ΨtΨ)−1σ. It is known that its confidence region
is a hyper-ellipsoid of volume proportional to the determinant of (ΨtΨ)−1. In order to
reduce var(Spce), the error in the estimation of Spce, one needs to reduce the confidence
region. A D-optimal design is a design that gives an estimation of Spce with the smallest
confidence region. It is the solution of the following optimization problem:

max
Ξ

det(ΨtΨ). (3.13)

This optimization problem constitutes the main task of our work: finding the D-optimal
design in the case of the regression based PCE. Several methods based on Fedorov ex-
change formula or heuristic optimization have been proposed to solve this particular op-
timization problem. In the following section, we give a review of these methods and we
introduce our coupling optimization algorithm adapted to the case of regression based
PCE as was discussed in Section 1.

4 Optimization algorithms

We recall that the purpose of this optimization algorithm is to generate a design of ex-
periments for the PCE approximation, as much accurate as possible, given a user defined
number of experiments.

Each uncertainty of each parameter is discretized such that it takes a finite number of
values, depending on the degree of the PCE. The combination of the discrete values of all
the parameters constitutes a grid of nodes where each node is an experiment candidate.
The design of experiments is a set of experiments chosen from this grid of nodes. One
can see that the size of the grid increases exponentially with the number of uncertain
parameters and the degree of the PCE.

A common criterion for selecting a DOE is the D-optimality one by maximizing the
determinant of the information matrix. This criterion can be computed using the Fedorov
algorithm (see [4]), which belongs to the family of ”exchange algorithms”. It is detailed
in Section 4.1. The underlying idea is to find the best DOE from a grid of nodes. At each
iteration, an experiment of the DOE is compared with all the experiments candidates of
the grid by applying the Fedorov exchange formula and it is exchanged with the best one.
The algorithm can handle efficiently a DOE of large size but it can become expensive in
computations when the size of the grid is large. Moreover, it can be trapped into a local
optimum.
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Two different approaches have been proposed to optimize the determinant of the
information matrix without scanning all the experiments candidates. In [2, 3] a genetic
algorithm is used to optimize the D-optimality criterion and in [5, 6] a heuristic search is
preferred. These algorithms are global methods and they can be a good choice over the
Fedorov method because they do not scan the whole set of candidates at each iteration.
However, the crossover operator presents two major drawbacks. First, it can be expensive
when DOEs have a large size because it requires the computation of the determinant
of the information matrix. Second, it has been observed in the numerical examples in
Section 5 that the crossover operator fails to optimize the determinant when the set of
experiments candidates is also large.

For this reason, an algorithm is proposed that couples the Fedorov exchange algo-
rithm with the genetic algorithms to overcome this difficulty. The use of the genetic
algorithms allows to avoid scanning all the experiments candidates. A cheap crossover
can be defined using the Fedorov exchange formula which avoids computing the deter-
minant of the information matrix. Some numerical experiments are carried out to show
the performances of this coupling with large DOEs.

4.1 The Fedorov algorithm

We start by showing how the determinant of ΨtΨ changes when an experiment of the
DOE is exchanged with a new one.

The matrix ΨtΨ can be written as ∑
Q
j=1ψ(ξ j)ψ(ξ j)t where ψ(ξ j)={ψi(ξ

j)}i=1,···,N is the

row of the matrix Ψ corresponding to experiment j. ΨtΨ is a sum of outer products over
the experiments of the DOE. When a new ξQ+1 experiment is added to the DOE, the new

information matrix Ψt
newΨnew becomes ∑

Q+1
j=1 ψ(ξ j)ψ(ξ j)t. From the matrix determinant

lemma, the determinant of Ψt
newΨnew can be updated from the one of ΨtΨ as follows:

det(Ψt
newΨnew)=det(ΨtΨ+ψ(ξk)ψ(ξk)t)

=det(ΨtΨ)×
(

1+ψ(ξk)t(ΨtΨ)−1ψ(ξk)
)

. (4.1)

If an experiment k is removed from the DOE, the update formula is the same as above but
the sign + is replaced with a −. Now, when an experiment l from the DOE is exchanged
with an experiment k, the determinant of the new information matrix Ψt

newΨnew can be
obtained by applying the above formula twice:

det(Ψt
newΨnew)=det(ΨtΨ)×

(

1+∆(ξk ,ξ l)
)

, (4.2)

where

∆(ξk,ξ l)=d(ξk,ξk)−d(ξk,ξk)+d2(ξk,ξ l)−d(ξk ,ξk)d(ξ l ,ξ l), (4.3)

d(ξk,ξ l)=ψ(ξk)t(ΨtΨ)−1ψ(ξ l). (4.4)
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When two experiments are exchanged, the determinant of the information matrix changes
with rate ∆.

The Fedorov algorithm for maximizing det(ΨtΨ) is based on the above formula. Con-
sider a set C of experiment candidates (a grid of nodes) and Ξ⊂C a random DOE of Q
experiments. The idea of the algorithm is that for each experiment ξ l ∈ Ξ we compute
the values of the function ∆(ξk,ξ l) for all ξk ∈C\Ξ and exchange ξ l with the ξk that gives
the maximal value of ∆. It can be summarized in Algorithm 4.1. One can see that this
algorithm is efficient in the sense that it uses the update formula to compute the determi-
nant at each iteration which is not an expensive operation. However, it can still be quite
expensive when the size of C becomes large.

It is important to note that the initial DOE has to be nonsingular, otherwise the deter-
minant of the matrix will stay equal to zero during all the execution of the algorithm.

Algorithm 4.1: The Fedorov Algorithm

Generate a random Ξ⊂C
Compute the determinant of Ξ

for all ξ j ∈Ξ do

set ∆max =0
for all ξ l ∈C\Ξ do

Compute ∆(ξk,ξ l)
if ∆(ξk,ξ l)>∆max then

Set ∆max =∆(ξk,ξ l)
Exchange ξ l with ξk

Update the determinant of Ξ

end if

end for

end for

4.2 Generating a nonsingular random DOE

If a DOE is generated by randomly selecting some experiments from a set of candidates
and the size of the DOE is small, there is a high probability to get a singular DOE. In
this case, the Fedorov exchange algorithm is not applicable because the determinant will
remain zero during the whole procedure. In the following, a method is proposed which
ensures that it always generates a nonsingular DOE.

We suppose that each parameter uncertainty can take p+1 distinct values, {r0,r1,··· ,rp},
indexed from 0 to p. An experiment is a node of the grid {r0,r1,··· ,rp}M and each exper-
iment is identified by an multi-index α ∈N

M. The set of experiments such that |α| ≤ p
guarantees to have a nonsingular DOE. Taking a DOE with these nodes and following
the Fedorov exchange formula, each experiment of this DOE can be exchanged with a
randomly selected one from the grid if the determinant of the DOE increases. Some high-
lights of the proof are given:
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• We recall that the PCE approximation is expressed in a Hermite basis. The terms of
the approximation can be developed in the canonical basis which leads to a poly-
nomial expression:

S̃=
|α|=p

∑
|α|=0

S
pce
α ψα(ξ)=

|α|=p

∑
|α|=0

Scan
α φα(ξ), (4.5)

where the φα(ξ) are the canonical monomials, Scan
α are the coefficients in this basis

and α is a multi-index in N
M. This notation with the multi-index is equivalent to

the one in (3.5). The change of basis is defined in a matrix form, Spce=C.Scan where
C is a nonsingular matrix. This implies that one can directly get the S

pce
α from the

Scan
α .

• If the PCE is of degree p, it is easy to see that the Scan
α associated to the monomials

of degree p are equal to ∂|α|S̃
∂ξα /∏

M
i=1αi!.

• the α-derivative of a polynomial function of degree p with |α|=p is equal to its finite
difference approximation because the finite difference approximation of order α is
derived from the Taylor expansion of the function and the Taylor expansion of order
α of a polynomial function is equal itself.

• Thus, one can choose the experiments of the DOE such that they correspond to
a finite differences scheme and directly compute the coefficients Scan

α with |α|= p.
Once these coefficients are evaluated, this operation can be repeated iteratively for
the degrees from p−1 to 0 and hence all the coefficients are computed.

• Given that the set of nodes with |α| ≤ p contains all the finite differences schemes
needed for computing all the PCE coefficients, a DOE containing these nodes is
nonsingular.

4.3 The coupled Fedorov-genetic algorithm

In [2, 3, 12], genetic algorithms have been used for finding D-optimal designs. They are
based on the definition of a random population which in this case is a set of DOE can-
didates. These individuals will interact with each other in order to evolve toward the
optimal solution. This evolution process can be summarized in the following steps. First,
the population of DOEs is initialized by generating randomly a certain number of DOEs.
Next and at each iteration, the determinant of each DOE of the population is computed.
A random procedure, called crossover, is applied to select the parents according to their
determinant and obtain the new DOEs offspring of the new population. For more infor-
mation on genetic algorithms see [11, 15].

During the optimization procedure, all the DOEs are nonsingular. This is guaranteed
by coupling the Fedorov exchange formula with the genetic algorithms.

In the initialization step, the random and nonsingular DOEs are generated like in the
previous section. In the crossover step, the two parents DOEs exchange some of their
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experiments without producing new singular DOEs. Let the two parents DOEs be Ξ1

and Ξ2 and Nc be the number of crossover points which is the number experiments to be
exchanged between them. An experiment is randomly selected in Ξ1 and it is exchanged
with another one in Ξ2 such that according to the Fedorov exchange formula the deter-
minant of both DOEs does not decrease. This operation is repeated Nc times to generate
new offsprings.

Algorithm 4.2: The GA-Fedorov Algorithm

Initialize a random population {Ξi} of DOEs

for k=1 to number of iterations do

Compute all the determinants of the population {Ξi}
for l=1 to population size do

Select two parents randomly according to their determinants

Reproduce an offspring using the Fedorov algorithm:

for m=1 to number of crossover points do

Choose randomly an experiment ξi of the offspring

Compute ∆(ξi,ξ j) for all ξ j in the second parent

Replace ξi with the ξ j that has a maximal ∆

end for

end for

Replace the parents population {Ξi} with the offspring population

end for

5 Numerical results

In this section, we show the efficiency of the coupling algorithm in generating accurate
and small-sized DOE for the regression based PCE. Three sets of tests are performed: a
comparison with the standard GA algorithm, a comparison with the closest to the origin
sampling method proposed in [1] and finally a comparison with the projection method.

5.1 Comparison with the Standard GA Algorithm

We start by comparing the standard genetic algorithm with the Fedorov-GA algorithm.
The set C of experiment candidates is taken the same as the one in [1]. It is the grid of
nodes {r0,r1,··· ,rp}M where ri are the roots of the Hermite polynomials of degree p+1.
The number of experiments in each DOE is taken as twice the number of coefficients in
the PCE. We compare the efficiency of our Fedorov based crossover with the standard
one. The PCE is of degree 4 and has 6 variables. The number of experiments in the DOEs
is 420. In Figs. 1 and 2, it is shown how the standard crossover is not able to improve
the determinant of the DOE unlike the Fedorov based crossover of our algorithm. In
the first case the determinant decreases during the iterations, while in the case of the
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Figure 1: Standard genetic algorithm: case of Hermite polynomial of degree p= 4, with M= 6 variables and
N=420 experiments.
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Figure 2: Coupled Fedorov genetic algorithm: case of Hermite polynomial of degree p=4, with M=6 variables
and N=420 experiments.

coupled algorithm the determinant increases. The optimization experiments are repeated
for several population sizes (10 and 20 individuals) and several number of crossover
points (Nc=30 and 50).

5.2 Comparison with the closest to the origin sampling method

In the second experiment, we compare the sampling method of DOE proposed in [1] with
our coupling method. The DOE in the quoted paper is made of the N closest points to the
origin in C. This method, as it is mentioned in the paper, has the drawback of requiring
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Table 1: Comparing the minimal size of the DOE required by the closest to origin method and the Fedorov-GA
method.

p×M # of experiments /det(ΨtΨ) N+1/det(ΨtΨ) 2×N/det(ΨtΨ)

(closest to origin) (Fedorov-GA) (Fedorov-GA)

3×4 87/29 36/35 70 /51

3×5 247/72 57/71 112/95

3×6 747/145 85/120 168/160

4×4 175/22 71/112 140/141

4×5 1125/270 127/240 252/293

4×6 4180/550 211/447 420/551

a large number of experiments in order to have a nonsingular DOE. Table 1 shows the
smallest DOE sizes that both methods can generate and it compares their accuracies by
computing their respective determinants. The minimal number of experiments required
for the coupling algorithm is always equal to the number of terms in the PCE. It can be
seen that the closest to origin method requires much more experiments than Fedorov-GA.
This can be very expensive in computations. The determinant of the DOE with the closest
to origin method is in the same range of values as the one obtained with the Fedorov-GA.
In conclusion, the coupled Fedorov-GA is more efficient because it gives DOE with the
same accuracy and much less samples.

5.3 Comparison with the projection method

In this third set of tests, the coupling algorithm is compared to the projection method
in terms of cost and accuracy. Three tests are based on analytical functions and one on
a finite elements model. The exact standard deviations of the analytical functions are
known in advance. By comparing it to the computed standard deviation, this gives the
accuracy of the PCE approximations by both methods.

• Test one: f (x)=∑
3
i=1sin(xi), xi∈ [−π,π] and the variance of f is equal to 1.5.

• Test two: g(x)=sin(x1)+a.sin2(x2)+b.x4
3 sin(x1), xi ∈ [−π,π] and the variance of g

is equal to a2

8 +b π4

5 +b2 π8

18 +
1
2 . In this example, a=7 and b=0.1.

• Test three: h(x)=∏
3
i=1

|4xi−2|+ai

1+ai
, with a=(1,2,5) and xi∈ [0,1]; the variance is equal

to 0.1336.

Table 2 gives the results corresponding to the analytical functions. It also shows the
relative errors of the two methods in computing the standard deviations of the three an-
alytical functions. One can see that both methods are able to compute accurately the
standard deviations of these functions: the highest relative error is only 1.23% with the
Fedorov-GA method for test 2. This method is also 2.5 to 3 times faster than the projec-
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Figure 3: Description of the finite element based test: the solid arrows are the uncertain variables.

Figure 4: The finite element model of the struc-
ture: two panels and one stringer.

Figure 5: The first buckling mode of the struc-
ture.

Figure 6: The second buckling mode of the
structure.

Figure 7: The third buckling mode of the struc-
ture.
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Table 2: Comparison of the results obtained by the projection method and the coupled Fedorov-GA method for
the analytical functions.

Projection Method Fedorov-GA Method

# samples StD Rel. Err. # samples StD Rel. Err.

f (x) 135 1.2243 0.03% 57 1.2235 0.1%

g(x) 495 3.720 0% 168 3.675 1.23%

h(x) 495 0.141 2.9% 168 0.148 5.4%

Table 3: Comparison of the means and the standard deviations obtained with the projection method and the
coupled Fedorov-GA method for the finite element test case.

Projection Method Fedorov-GA Method Rel. Diff.

Mean StD Mean StD Mean StD

Degree=2 (78 samples) Degree=2 (30 samples)

Weight 73100 3.73×103 72000 3.75×103 1.3% 0.7%

Mode 1 0.529 5.47×10−2 0.568 5.13×10−2 7.3% 6.1%

Mode 2 0.903 8.79×10−2 0.910 8.55×10−2 0.7% 2.7%

Mode 3 1.315 1.32×10−1 1.33 1.27×10−1 1.6% 3.5%

Degree=3 (257 samples) Degree=3 (84 samples)

Weight 83900 3.39×103 84900 3.37×103 1.1% 1.1%

Mode 1 0.539 5.56×10−2 0.503 5.92×10−2 6.7% 6.4%

Mode 2 1.04 8.13×10−2 1.00 8.12×10−2 3.29% 0%

Mode 3 1.514 1.2×10−1 1.45 1.23×10−1 3.9% 1.1%

tion method. This result shows that the Fedorov-GA method is able to generate a PCE
approximation that accurately approximates these functions and with a low cost.

Table 3 gives the results corresponding to the finite element based functions. Here,
the exact means and standard deviations are not known in advance. Hence, the rela-
tive difference between the standard deviations of both methods is compared. One can
see that both methods give close results because the highest relative difference is about
7% and it is in the case of mode 1 with degree two. On can see that the Fedorov-GA
method gives comparable results to the projection method with a computational cost 2.5
to 3 times lower. This concludes that these finite element based functions are accurately
approximated with the PCE generated by the Fedorov-GA method.

6 Conclusion

In this paper an optimization algorithm is proposed for generating small sized DOEs for
regression based polynomial chaos expansion. This method has the advantage of not
prescribing the number of samples but it gives the possibility to the user to define the
number of samples. For example, one can choose to take the fewest number of samples
which is the number of terms involved in the PCE. The optimization algorithm is a ge-
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netic algorithm with a crossover operator based on the Fedorov algorithm. It is used to
maximize the D-optimal criterion of the DOE. We show the efficiency of this coupled al-
gorithm by comparing it with the standard GA, the closest to origin sampling method
and the projection method. Some analytical and finite element based tests are consid-
ered. The efficiency of the proposed algorithm is shown in terms of cost reduction and
accuracy in all the preceding cases.
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